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Spatial organization and evolution period of the epidemic model using cellular automata
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We investigate epidemic models with spatial structure based on the cellular automata method. The construc-
tion of the cellular automata is from the study by Weimar and Boon about the reaction-diffusion equations
[Phys. Rev. E 49, 1749 (1994)]. Our results show that the spatial epidemic models exhibit the spontaneous
formation of irregular spiral waves at large scales within the domain of chaos. Moreover, the irregular spiral
waves grow stably. The system also shows a spatial period-2 structure at one dimension outside the domain of
chaos. It is interesting that the spatial period-2 structure will break and transform into a spatial synchronous
configuration in the domain of chaos. Our results confirm that populations embed and disperse more stably in

space than they do in nonspatial counterparts.
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INTRODUCTION

Several theoretical models have shown that population in-
vasion and dispersion is more stable in space than that in
nonspatial counterparts. More stable means that a previously
unstable equilibrium point becomes stable under a greater
variety of conditions, or that an equilibrium is approached
faster [1]. In oscillatory systems where the equilibrium is a
limit cycle or more generally, an unstable focus, diffusion or
dispersal will create wavelike patterns. The lattice Lotka-
Volterra (LLV) model was studied extensively [2-4]. In a
nonlinear ecology system, the two most commonly seen pat-
terns are spiral waves and turbulence. Spiral waves play an
important role in ecological systems. For example, spatially
induced speciation prevents the extinction of the predator-
prey models [5,6]. A classical epidemic model is an ordinary
differential equation (ODE) or a mean-field (MF) approxi-
mation [7]. The ODE methods (or MF) are based on the
assumption that the population is well mixed, with the sub-
populations (involving susceptible, infected, removed, etc.),
interacting in proportion to their sizes. Nonspatial theory
typically predicts a selection for the maximal number of sec-
ondary infectors. Among these epidemic features, the exis-
tence of threshold values is crucial for the spread of an in-
fection [8,9]. A second classical approach describes spatially
extended subpopulations such as a coupled map-lattice
model [10], reaction-diffusion equations, deterministic cellu-
lar automata, and an integrodifference equations model. In
the literature [11] the authors present the numerical simula-
tions in a predator-prey system, and show that there are ei-
ther irregular spatiotemporal oscillations behind the invasion
or regular spatiotemporal oscillations with the form of a
periodic traveling “wake” depending on parameter values.

In our paper, the geographic spread of an epidemic can
be analyzed as a reaction-diffusion system in which both
the subpopulation exhibits local random movement and
the algorithm of cellular automata are based on this paper
[11,12]. More recently, studies have shown large-scale
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spatiotemporal patterns in measles [13] and dengue fever
[14]. These studies have shed new light onto key research
issues in spatial epidemic dynamics, but the detailed theoret-
ical studies are difficult. The study of population dynamics
takes into account the species distribution in space, interac-
tions between individual species that are located in the same
neighborhood, and the mobility of the various species
[15-17]. These studies predict the formation of a spatial
complex structure, phase transitions, multistability, oscilla-
tory regions, etc. In Ref. [17], the author studies the
susceptible-infected-resistant-susceptible ~ (SIRS) models
with a spatial structure using cellular automata rules, show-
ing the formation process of the spatial patterns (turbulent
waves and stable spiral waves) in the two-dimensional space
and the existence of stable spiral waves in the SIRS model.

The principal objective of the present work is that the
susceptible-exposed—infected-resistant (SEIR) model with
spatial structure is investigated by using the cellular au-
tomata algorithm. The SEIR model and its classical ODE
version are presented in Refs. [18,19]. In fact, many diseases
are seasonal, and therefore an important question for further
study is how seasonality can influence spatial epidemic
spread and evolution. Hence, we consider the seasonal pa-
rameter B(1)=B[1+¢ sin(27t)], where € is the fluctuating
amplitude of the contact rate. Commonly, we describe the
susceptibility, exposure, infection, and recover process in
terms of four nonlinear ODEs. We use S for susceptibles, E
for the exposed, I for infectors, and R for the recovered. The
dynamical equations for the SEIR model are

B p1-5)- s, (12)
P pos - (u+ OE, (1b)
dt

dl

2= E- (ol (L)
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dR I — uR (1d)
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Here u is the death rate per capacity, and 1/6 and 1/ are
the mean latent and infectious periods, respectively, of the
disease. B(r) is the rate of disease transmission between in-
dividuals. The population can be normalized to S+E+I+R
=1, so all dependent variables represent fractions of the
population. The original studies show that the system of (1)
exists with three phase transitions, which are the stable be-
havior, the limit cycle, and the chaotic behavior in the mean-
field limit [18] with respect to the fluctuating amplitude &.

NEIGHBORHOOD-DEPENDENT MODEL

Generally, studies on the spatial epidemic models show
that there exists spatiotemporal traveling waves [20] [e.g.,
dengue hemorrhagic fever (DHF) [14,21] and measles [13]].
However, few systems are well enough documented to detect
repeated waves and to explain their interaction with spa-
tiotemporal variations in population structure and demogra-
phy. The actual epidemic spread is spatiotemporal and local
individuals interact. Here we study the individual moving of
the susceptible, exposed, infector, and recover models, and
their diffusion from one lattice site to another. Then Egs. (1)
read

% = - BWIS — uS +D,V*S(r,1), (2a)
aE;: 0 B(OIS — (uw+ OE +D,V?E(r,1),  (2b)
% = 8E — (y+ wI + D;VI(r,1), (2¢)
WROD) - iR+ DVR(). (2d)

ot

We study the system (2) using the cellular automata
method, which is suitable for modeling many reaction-
diffusion systems in a quantitatively correct way based on
Ref. [12], and demonstrate recurrent epidemic spiral waves
or traveling waves in an exhaustive spatiotemporal system
through the numerical simulation. Simply, we use c(r,?) to
denote the vector of individual density in position r and at
time ¢, and L(c(r,?)) to describe the local kinetics; D is the
diffusion coefficient matrix. Then the system (2) can be
written as

‘?CE;; 0 L(c(r,1)) + DV2c(r1). ®)

In the following simulation, we may discard Eq. (2d) since
we are concerned only with the susceptible, exposed, and
infected models.

We define this model as follows. Space is made up of a
square lattice of J X J. In each step the individuals randomly
move in its neighborhood. The state of the cellular automata
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is given by a regular array of density vector ¢ residing on a
two-dimensional lattice. We consider cellular automata with
b; states (denoted by the integers 0,1,2,3,...,b;). Here spe-
cies states 0 and b; are zero population level and maximum
population level, respectively. The first step of each time
iteration corresponds to local dynamics and the state at each
spatial lattice changes independently of the states at other
vicinity lattices. The second part of each time step corre-
sponds to unbiased spatial movement. The central operation
of the cellular automaton consists of calculating the sum

)= 2 clr+r), (4)

r/eN,-

where the summation takes up all of the nearest neighbors
of the cell r. The neighborhoods can be different for each
species i. We use the Moore neighborhood for all i in the
two-dimensional space, i.e.,

quuare = {(070)7(1’0)’ (O’ 1)’ (_ 170)7(07_ 1)’
(191)9(_ 1’1)’(1’_ 1)9(_ ls_ 1)} (5)
We normalize the values of ci(r,f), and the c,(r,?)
=c(r,1)/(b;N;) is the local average density of the ¢,(r,r). The
c¢;(r,1) is always between zero and one.

From Ref. [12], the two-dimensional discretization
version of Eq. (3) takes the form

ci(rt+ 1) =c(r,t) + AtL(c{(r,0)) + DVc,(r,1), i=1,2,3,4,
(6)
where
At .

DizDi[P’ 1= 1,2,3,4, (7)

and D, defines the space scale.

Furthermore, we have

ci(rt+1)=L(¢(r,1), i=1273,4, (8)

where L*(¢c,(r,t))=c¢i(r, 1)+ AtL(CA(r,1)).
As ¢(r,1) is the average output of the cellular automata
(CA) for the system (2), it is given by

ci(rt+1)= \%L(%)

Vi

+1, 9)

for species j. A detailed description of ¢(r,7) as an output of
the CA can be found in Ref. [12].

NUMERICAL RESULTS

We have performed extensive numerical simulations of
the described model, and the qualitative results are shown
here. In cellular automata simulation, periodic boundary con-
ditions are used and Ar=0.005. The space scales D;=0.2,
D,=0.05, D;=0.02 and the grid size used in the evolutional
simulations is 100 X 100 cells. Every species has 100 states
in system (2) and more states enable more accurately
for discrete representation of the continuum models, while it
is complex for analysis, and this is described in detail
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FIG. 1. A typical simulation
shows four snapshots of the evo-
lution in two-dimensional space
with the parameters w=0.02,
6=35.84, y=100, B,=1800, and
£=0.23. The figures plot suscep-
tible density levels as a space on
gray scale. The exposed and
infected distribution has a qualita-
tively similar form.

FIG. 2. (Color online) The
spatial period-2 structure results
for the system (2) in one-
dimensional space in cellular au-
tomaton models and the param-
eters are the same as those in Fig.
1. We use a spatial domain of 100
lattices; 10 000 successive time it-
erations are plotted. In (a) we
show the species density as a
function of time. (b) and (c) show
the susceptible and exposed den-
sity levels as a function of space
and time on a gray scale, respec-
tively. The behavior of the in-
fected is qualitatively similar. At
this scale the spatial discretization
is not really visible, and therefore
we have enlarged one region of
the plane in (c) as in (d), in order
to illustrate this discretization.
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FIG. 3. A typical simulation
shows four snapshots of the evo-
lution in two-dimensional space.
The parameters are the same as in
Fig. 1; ©=0.02, 6=35.84, y=100,
Bo=1800, and £=0.38. The fig-
ures plot susceptible density levels
as a space on gray scale. The ex-
posed and infected distribution
has a qualitatively similar form.
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FIG. 5. (Color online) The spatiotemporal evolution of the sys-
tem (2) in one dimension in cellular automata models for the &
<e&" case, £=0.035. In (a) we show the species density as a func-
tion of time. (b) is the plot susceptible density as a function of space
and time on a gray scale. The behavior of the exposed and infected
distribution is qualitatively similar.

elsewhere [22]. We have tested that the larger grid size does
not change the qualitative result for the evolutional dynam-
ics. The contact rate fluctuates with the seasons and can be
approximated in several ways. Simply we choose sinusoidal
force B(t)=By[1+e sin(2mr)], where 0<g <1, and another
more realistic option is term-time force, which sets transmis-
sion rates high during school terms and low in other places
[23]. The spatial patterns evolve from random initial condi-
tions. The maximum density of susceptible levels, exposed
levels, and infected levels are set to 50, 5, and 1, respec-
tively, in the two-dimensional space. Other initial conditions
have been explored as well, and no change has been ob-
served in the behavior. In Fig. 1 and Fig. 3 four different
snapshots during the temporal evolution of the system are
presented in two-dimensional space. These figures and the
following figures are species density levels as a function of
space and time on a gray scale, with white corresponding to
the lowest-density state and black corresponding to the
highest density state.

Figures 1 and 3 have depicted spatial patterns in the
two-dimensional space under different & values (the fluctu-
ating amplitude of contact rate), respectively. We have
examined the temporal evolution by displaying a successive
time frame as a movie, but we are unable to represent this
effectively on the printed page. From evolution snapshots
(Fig. 1), one can see that there is no occurrence of spiral
waves (fractal fronts) even if the system reaches a stable
state when the ¢ is in a certain interval. The certain interval
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turned out to be &” <& <, with the parameter value used in
the figure and &"~0.048 and &,.~0.305. Here the critical
value &,~0.305 in the spatial model (2), which is more than
the value of the local dynamic of the chaotic point of system
(1) [18] (=0.28). This result suggests another possible expla-
nation, which is that populations embed and disperse more
stably in space than they do in nonspatial counterparts
[24,25]. As the & (e>g, in the domain of chaos) and time
increase, the dynamical patterns with fractal fronts (spirals
waves) of spatial structures occur and become larger and
more stable (see Fig. 3). The CA models are generally based
on qualitative rather than quantitative information about the
system. It is difficult to detect the density calculated over the
entire lattice when the system is larger. Hence, in order to
investigate quantitatively the evolution of system (2), we
give the results by one-dimensional space. An explicit visu-
alization of spatial organization within the lattice is provided
by the space-time plot of Figs. 2 and 4.

In Fig. 2(a) the three time series displaying the density of
susceptible, exposed, and infected models for the first 10 000
steps by CA are given. Self-sustained oscillations of the three
time series develop [see Fig. 2(a)]. The amplitude of oscilla-
tions increases with the increase of fluctuating amplitude of
the infection rate & [compared Figs. 2(a) and 4(a)]. In fact,
large oscillations will lead to the stochastic extinction of the
species, when the value of the fluctuating amplitude is more
than &, in the domain of chaos. In Figs. 2(b) and 2(c), spa-
tiotemporal pictures of the susceptible and exposed models
are plotted, respectively, where time increases from bottom
to top and the horizontal axis represents the spatial location.
From Figs. 2(b) and 2(c), it is clearly seen that the whole
system shows the spatial period-two structure when the € is
between & and &, (later we will give the case when & is
smaller than a critical value &”).

To further investigate the impact of the fluctuating ampli-
tude on the dynamical patterns with fractal fronts (or spiral
waves) in two-dimensions and the spatial period-two struc-
ture in one-dimensional space, respectively, we study the
case when the SEIR model is deeply in the domain of chaos
and out of the domain of chaos. The evolution of system (2)
is shown with £=0.38 in Figs. 3 and 4. In Figs. 3(b)-3(d)
three snapshots are taken at 5250, 5300, and 5350 steps,
respectively. In Fig. 3(b) the rotating spirals are not recog-
nizable due to the irregular interfaces. However, the spiral
formation becomes visible when the interfacial roughness
grows by the infected invasion as demonstrated in Fig. 3(d).
In Fig. 3(d) one can easily identify the vortices and antivor-
tices rotating clockwise and counterclockwise, respectively.
We have to emphasize that this pattern cannot be character-
ized by a single length unit (e.g., correlation length) because
the main features of spirals (armlength, average curvature,
average distance, etc.) depend on the model parameters. But,
it may be analyzed by using a geometrical features method
[26]. The armlengths of these spiral waves are broad and do
not easily break, resulting in the periodical recurrence of
epidemic waves. The spontaneous formation of spiral waves
means the regularly recurrent infection waves [Figs.
3(a)-3(d)]. Similarly, the irregular spiral waves can also be
observed even when the fluctuating amplitude is much more
than the critical value .. These results are not shown in this

paper.
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Figure 5 shows the time evolution of the density of the
species and the spatiotemporal configurations of the system
(2) at £=0.035. The spatiotemporal evolution of the exposed
and infected models are similar to the susceptible’s [Fig.
5(b)]. It can be clearly noticed that the spatial period-two
structure disappears and the stationary state is a fixed point
with the decreasing of €. The situation corresponds to a low
and persistent endemic infection in Fig. 5(a). The oscillations
decay to the fixed point when the € is smaller than the criti-
cal value £" case. The oscillations decay because these infec-
tion clusters grow, the availability of infected hosts per sus-
ceptible host is reduced, and the number of new infectors
decreases. In this case, the spontaneous formation of dy-
namical patterns is qualitatively similar in Fig. 3 in two di-
mensions.

CONCLUSIONS

A realistic spatial epidemic with the individuals randomly
moving in its neighborhood has been modeled using cellular
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automata. Our simulations demonstrate that the recurrent
infection waves exist and persist in an exhaustive spatiotem-
poral system. We have investigated the dynamical patterns of
system (2) in one and two dimensions, respectively. We show
that the spiral waves recur periodically and the recurrence is
insensitive to the change of the fluctuating amplitude &
within the domain of chaos (the fluctuation amplitude
&£>g,). Moreover, the dynamical patterns with fractal fronts
grow stably. The system also shows a spatial period-2 struc-
ture in one dimension when & is between &” and &, outside
the domain of chaos. It is interesting that the spatial period-
two structure will break and transform to spatial synchronous
configuration in the domain of chaos. Our results confirm
that populations embed and disperse more stably in space
than they do in nonspatial counterparts.
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